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Chronic stress and the adult zebrafish brain: the importance of the GABA 
signaling system by a gene-expression perspective 
 
1. Introduction 

Animals live in an environment that poses fundamental surviving challenges, which 
need to be sensed and interpreted to produce proper behavioral responses. In the 
vertebrate brain, potentially life-threatening conditions cause the activation of 
defensive survival circuits.1 Those involve descending crosstalks between the cortex 
and the amygdala, and the latter and the hypothalamus, as well as ascending 
projections traveling the opposite direction.2-7 Descending brainstem projections 
affect the activity of hypothalamic nuclei, too.4-6 The ultimate effect of the activation 
of defensive survival circuits is a switch-on of the endocrine stress response, achieved 
through communications between the hypothalamus and the hypophysis.1,4,5 This 
starts with the release of corticotropin-releasing hormone (CRH) by CRH cells 
located in the paraventricular nucleus (PVN) of the hypothalamus. CRH in turn 
stimulates the secretion of adrenocorticotrophic hormone (ACTH) from the anterior 
pituitary, which subsequently stimulates the synthesis and systemic secretion of 
glucocorticoids from the adrenal cortex into the bloodstream4,5. Glucocorticoids 
(mainly cortisol) regulate the energy status of the body, promoting energy 
mobilization and therefore facilitating a reaction to a threat.6 The physiological 
pathway, starting from the nervous system and eventually affecting the adrenal cortex, 
is termed hypothalamo-pituitary-adrenal (HPA) axis in mammals.6 In teleosts, no 
condensed adrenal gland is present; it is rather possible to identify sparse cell clusters 
analogous either to the adrenal medulla or cortex.8 Thus, for fish the definition 
hypothalamo-pituitary-interrenal (HPI) axis is used. 

In the adult vertebrate brain, inhibition of defensive survival circuits is mediated 
by the major inhibitory neurotransmitter γ-aminobutyric acid (GABA), which is 
synthesized from α, L-glutamate by glutamate decarboxylases (GADs).9,10 GABA is 
widely employed as signaling molecule in defensive survival circuits, as reported by 
immunological studies on GADs distribution in both mammals and fish.10-13 The use 
of GABA is also witnessed by GABAA receptor subunits, which assemble in a region-
specific fashion with a strict stoichiometry.14-19 GABAA receptors are homo- or 
heteropentamers; in mammals there are nineteen genes encoding for its monomers, in 
zebrafish at least twenty-three.20,21 In the amygdala of rats and mice α2 and α3 are 
detected to the highest level among the α monomers.14,17-19 The β3 and γ1 subunits are 
also produced to high levels; in this brain area α2β3γ1, α3β3γ1 GABAA receptors are 
found. The γ2 monomer is present as well, and receptors incorporating this subunits 
may also be located in the amygdala.14,19 In the hippocampus α5β3γ2 GABAA 
channels are present.14,15,19,22 The pattern of GABAA receptor subunits expression is 
somewhat different between rats and mice in the hypothalamus. In the former species 
the α2β3γ1 combination is detected, whereas the latter also presents the α2, β1, and γ2 
monomers detected to a certain level.14,19 Chronic stress impairs GABA signaling in 
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the defensive survival circuits, both at the gene expression level23,24 and in terms of 
altered chloride permeability of GABA target cells.25 

Also the HPA-axis is under GABAergic control. CRH neurons in the PVN 
receive tonic inhibitory GABAergic input that constrains CRH neuronal activity 
under basal conditions.26 Following an acute threat, the frequency of spontaneous 
inhibitory postsynaptic currents is reduced up to 5 h later, causing an increase in 
circulating glucocorticoid levels. Chronic stress and sustained increases in systemic 
glucocorticoid levels lead to suppression of GABAergic inhibition of CRH neurons, 
by a reduction in GABA synapses.26 Also the composition of the GABAA receptors in 
the PVN can change in response to chronic stress, towards increased expression of 
neurosteroid-sensitive GABAA receptor δ subunit-containing receptors.24 Stress-
derived steroid hormones can be metabolized to neurosteroids (such as THDOC and 
allopregnanolone), which can act as positive allosteric modulators of GABAA 
receptor δ subunit-containing receptors, potentiating the tonic component of 
GABAergic inhibition.27 This would provide a reciprocal regulation of stress 
hormones and GABA receptors, where GABAergic inhibition regulates the HPA-axis 
and the production of stress hormones and derived neurosteroids also alter this 
GABAergic inhibition during chronic stress.27 

 
2. Aim of the study in detail 

 
The aim of the project is to investigate the effect of acute versus chronic stress on 

the GABA signaling system in the adult zebrafish brain. Our group has recently 
characterized the GABA signaling system in the adult zebrafish brain21, and qPCR 
primers have been developed to quantify mRNA expression of GABAA receptor 
subunits and GADs in specific brain areas. Both female and male zebrafish will be 
studied, allowing for investigation of potential sex differences. 
 
3. Techniques 

 
a. Dissection of the zebrafish brain; 
b. RNA extraction and RNA quality evaluation; 
c. Reverse transcription of RNA into cDNA; 
d. RT-qPCR; 
e. Measurement of water total cortisol; 
f. Measurement of plasma cortisol; 
g. Data analysis. 
 
4. Supervisors 

 
Prof. Svante Winberg (Uppsala University, Sweden) <svante.winberg@neuro.uu.se>, 
Dr. Arianna Cocco (formerly Uppsala University, Sweden, now Institute of Science 
and Technology Austria), Dr Per-Ove Thörnqvist (Uppsala University, Sweden). 
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