Our country-level models are in line with mainstream studies of conflict at the country level. We forecast a high risk of state-based conflict in countries with large populations, in non-democracies and countries with recent regime change, with low or negative growth rates, and with low education levels, or other indicators of low socio-economic development. The risk is also high in countries that have a recent history of conflict or with recent protest events. Our forecasts for Cameroon, for example, are due to tensions after separatists declared independence of ‘Ambazonia’ in October 2017. In Kenya, forecasts are based on recent electoral violence, confrontations between cattle rustlers and herders, and attacks against civilians by actors with unclear affiliation.

A strategy of ‘divide and conquer’

To assess the risk of political violence, ViEWS breaks the task into constituent parts.

Outcome: We analyze three forms of violence separately, as coded by the UCDP (ucdp.uu.se):
- state-based armed conflict (Sa)
- non-state conflict (ns)
- one-sided violence (OS)

Levels of analysis: ViEWS models the risk of these outcomes at three levels of analysis:
- The country level (CM)
- The geographical level (PG)
- The actor level (AL), not yet implemented

Model averaging: ViEWS explores a number of different modeling strategies and combines them in ensembles of models, one for each combination of level and outcome of analysis.

Predictive performance across all months in test window

<table>
<thead>
<tr>
<th>Predictor</th>
<th>CM</th>
<th>PG</th>
<th>AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS level, SM ensemble</td>
<td>0.921</td>
<td>0.923</td>
<td>0.918</td>
</tr>
<tr>
<td>CM level, NS ensemble</td>
<td>0.928</td>
<td>0.924</td>
<td>0.929</td>
</tr>
<tr>
<td>CM level, NS ensemble</td>
<td>0.923</td>
<td>0.916</td>
<td>0.927</td>
</tr>
<tr>
<td>LS level, NS ensemble</td>
<td>0.926</td>
<td>0.923</td>
<td>0.922</td>
</tr>
<tr>
<td>CM level, OS ensemble</td>
<td>0.958</td>
<td>0.933</td>
<td>0.990</td>
</tr>
<tr>
<td>CM level, OS ensemble</td>
<td>0.943</td>
<td>0.919</td>
<td>0.940</td>
</tr>
</tbody>
</table>

The table shows three common summary statistics of predictive performance: the AUC, the Brier score, and the log loss. These scores do not have any meaningful interpretation in themselves, and are calculated here as a baseline against which ViEWS will test its own performance in future releases.

Who we are

ViEWS is directed by Håvard Hegre, Dag Hammarskjöld Professor in Peace and Conflict Research at Uppsala University. The team members behind the current forecasts are listed as authors above. Some other scholars are working with innovations in ViEWS to be included in later releases.

ViEWS is funded by the European Research Council (ERC) (grant agreement #84046). ViEWS computations are performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at LINKMAX.

Funding

ViEWS is directed by Håvard Hegre, Dag Hammarskjöld Professor in Peace and Conflict Research at Uppsala University. The team members behind the current forecasts are listed as authors above. Some other scholars are working with innovations in ViEWS to be included in later releases.

ViEWS is funded by the European Research Council (ERC) (grant agreement #84046). ViEWS computations are performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at LINKMAX.

Who we are

ViEWS is directed by Håvard Hegre, Dag Hammarskjöld Professor in Peace and Conflict Research at Uppsala University. The team members behind the current forecasts are listed as authors above. Some other scholars are working with innovations in ViEWS to be included in later releases.

ViEWS is funded by the European Research Council (ERC) (grant agreement #84046). ViEWS computations are performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at LINKMAX.